Inclines

Draw an incline which makes an angle of $\boldsymbol{\theta}$ with the horizontal.

Consider a block placed on the incline. Gravity pulls the block straight downwards while the Normal force acts

We can resolve the force of gravity into two perpendicular components:

Force parallel to the incline ($\boxed{fg11}$) and the force perpendicular to the incline ($\boxed{fg11}$

$$Sin\theta = \frac{Fg_{II}}{Fg}$$
 $Cos\theta = \frac{Fg_{II}}{Fg}$
 Fg
 $I = sin\theta \cdot Fg$

$$F_{g\perp} = \cos\theta \cdot F_g$$

Key finding:

The parallel component of gravity will pull object down ramp

The perpendicular component of gravity will equal the normal force

Example 1: A 8.0 kg block is placed on a frictionless 35° incline. What is the force acting to pull the block down the incline? What is the acceleration of the block?

Figure 5:
$$n35 \times F_g = 5: n35 \times m \times g$$

$$= 5: n35 \times 80 \text{ kg} \times 9.8 \text{$$

Example 2: How much force is required to push a 24 kg block up a 52° incline at a constant velocity?

Example 3: How much force is required to push a 16 kg block up a 37° incline so that it accelerates at 1.2m/s²?

$$F_{net} = ma = 16 kg \times 1.2 m/s^2 = 19.2 N$$

$$F_{q_{11}} = \sin 37^{\circ} \times F_{q}$$

= $\sin 37^{\circ} \times |6 \text{ kg} \times 9.8 \text{ m/s}^{2}$
= 94.4 N

Example 4: What is the normal force acting on a 29 kg block on a 26° incline?

$$F_{N} = F_{9\perp} = \cos 26^{\circ} \times F_{9}$$

= $\cos 26^{\circ} \times \frac{29}{8} \times \frac{9.8}{5^{\circ}}$
= $255N$
= $260N$